
partial drying of the structure; APfl, viscous pressure losses in the fluid; N = or/~fl , 
characteristic parameter of the heat carrier; o, coefficient of surface tension of the fluid; 

r is the latent heat of vaporization; Vfl and ~v, kinematic coefficients of viscosity of the 
fluid and of the vapor on the saturation curve~ 
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NONSTATIONARY DOPPLER EFFECT FOR WAVES PROPAGATING IN NONHOMOGENEOUS MEDIA 

V. I. Krylovich UDC 536.2:534.6 

The theory of the frequency shift of continuous waves propagating in a medium whose 
properties depend on the coordinates and time is presented~ 

The fundamentals of the nonstationary frequency shift theory for waves propagating in a 
homogeneous medium whose properties vary in time are presented in [i-3]; the merits of the 
measurement and inspection methods based on this effect are demonstrated. In the general 
case, the medium under investigation can be nonhomogeneous, i.e., the wave propagation veloc- 
ity in this medium not only can vary in time as a certain process develops, but it may also 
depend on the coordinates. A multilayer system provides a typical example. 

If one assumes that the wave propagation velocity in the medium depends on all af the 
space coordinates and the time, i.e~ v = v(x, y, z; T), consideration of the frequency shift 
problem is made very difficult by the accompanying phenomena of phase surface distortion, 
interference, and diffraction. Therefore, we shall introduce certain simplifications which 
will make it possible to separate the above effect in "pure fos Consider the unidimen- 
sional case of propagation of a plane wave along the x axis in a medium whose properties de- 
pend only on the single coordinate x and the time T, i.e., v = v(x, T). Moreover, we neglect 
wave reverberations between the different layers of the medium. 

The essence of the method used in [1-3] for determining the frequency shift consists in 
utilizing the law of motion of the phase surface of waves with a certain phase ~ in the med- 
ium. The integral relationships given in these papers account for the change in the wave 
propagation velocity as the wave passes through the investigated section of the medium. It 
can readily be shown that they can be derived by solving the differential equation 

dx = v(r), (i) 
dr 

where v(T) is the time dependence of the wave velocity in the medium. Actually, the general 

solution of Eq. (i) has the following form: 

X ( r ) =  yu ( r )  d r q - C = S ( r ) @ C ,  (2) 

where  S(~) i s  t he  p r i m i t i v e  f u n c t i o n  of  v ( T ) ,  and C i s  t h e  i n t e g r a t i o n  c o n s t a n t ,  I f  a wave 
with the phase 99 is located at the point x~ at the instant of time z~ (i.e., if it has en- 
tered the section of the medium under investigation), we have x~ = S(T~) + C, whence C = x~-- 
S(TI), and we thus obtain the particular solution of Eq. (i), 
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x(J - ~ + s(~)--s(~3, (3) 

which represents the law of motion of a wave that has entered the investigated section of the 
medium at the time T~. If this wave is located at the point x2 at the instant of time T2 

(i.e., if it has left the investigated section), we write x2 = xl + S(<2) -- S(T~), or 

x ~ - -  x~ - -  L = S ('c~) - -  S ('q) = ~" v ('c) &,  (4) 

which coincides with expression (i) in [2]. Similarly, we can derive the other equations 
given in [2]. 

In order to establish the relationship between the frequencies of the same wave at the 
times of its passage across the boundaries of the investigated section of the medium, we write 
(2) in the following form: 

x ( ~ ) - - S ( T ) - - C - - F ( x ,  ~; C) = O, (5)  

and we write for the particular solution (3) 

and, instead of relationship (4), 

Y(x, ~:; x~, "q)= O, (6) 

F (x~, T,.; x,, ~ ) =  O. 

For a wave with the phase ~ + 5~ we similarly obtain 

F (x2, ~2 + A'~2; xl, % § A'q) = O. 

Using the latter expression to define the relationship 

lira A'c2 _ d'r2 OF/&~ 
,x~-o AT I dz 1 OF~Or,,. 

and considering that (see Eq. (5) in [3]) 

we finally obtain 

(7) 

(8) 

(9) 

OF(x2, ~2; x,, ~)lO~ (i0) 

Relationship (i0) has a sufficiently high degree of generality; it relates the frequency 

of the wave at the time of its reception to the frequency of the same wave at the moment of 
emission (if the emitter and the receiver are located at the boundaries of the investigated 
section of the medium). If f1(T) = fo = const and the wave source and receiver are immobile 
(x2 and xl are independent of time), we obtain from the above relationship the equation for 

the nonstationary Doppler effect; assuming that x~ = x1(T) and x2 = x2(T), we obtain from 
(i0) directly the generalized relationship given in [3]. 

The approach presented above can also be used for an inhomogeneous medium. The only dif- 
ference is that, for the given constraints, we seek in this case, instead of Eq. (i), the 

solution of the differential equation 

&= v(x, ~) (Ii) 

for the initial condition 

x (~,) = x~. (!2) 

The measurement and inspection methods based on the nonstationary frequency shift con- 
sist in comparing continuously during an experiment the received and the emitted signals and 
separating and recording their frequency difference, in which a harmonic signal with highly 
stable frequency, i.e., f1(T) = fo = eonst, is supplied to the emitter. In this case, the 
wave reception time T2 can be conveniently considered as the present time T2 = T, while T~ = 
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T -- ~, where ~ is the time during which a wave recorded at the given instant of time z tra- 
verses the investigated section of the medium, i.e., it is the lag time. Considering this, 

we write the following instead of (7): 

F(x~, r; x~, ~ - - - ~ ) : 0 .  (13)  

Relationship (13) is the equation for determining z~ for the assigned values of x~, x~, and 

~. Comparing (7) and (13), we obtain 

dr~ d~ 1 

dT i -- d ( r - -  %~) 1 -- dS-C (14) 

dr  

T a k i n g  i n t o  a c c o u n t  (13)  and  a s s u m i n g  t h a t  f l ( z )  = fo  = c o n s t ,  we o b t a i n  i n s t e a d  o f  (10)  t h e  
more convenient expression 

d~ 3 OF/& (15) 
Af (~) = - fo G-~ = f~ O F ~  ' 

where Af(T) : f2(T) -- fo; F is determined by expression (13) and is found as the implicit 
solution of Eq. (ii), which satisfies the conditions 

X(~--T3)=Xl, x(~)~X2. (16) 

It should be mentioned that it is usually impossible to derive an explicit analytical 
dependence of ~ on T from (13) [4]. Therefore, in spite of the apparent simplicity of the 
theory presented above, calculation of the relationship Af(z) for specific experimental con- 
ditions involves great difficulties and usually requires the use of numerical methods and 
computers. However, in many cases of practical importance, the magnitude of the frequency 
shift is negligibly small in comparison with the frequency of emitted waves, i.e., Af << fo. 
Using this condition, we can derive an approximate expression for the frequency shift involv- 
ing a relative error of the order of 5f/fo in comparison with the exact expression by utiliz- 

ing the following relationship as the initial expression [i, 2] 

L dv ( 1 7 )  
a f  = fo - -  - - ,  

v 2 dT 
w h i c h  h o l d s  f o r  a h o m o g e n e o u s  m e d i u m .  

Assume t h a t  an  e x p l i c i t  d e p e n d e n c e  o f  t h e  wave  v e l o c i t y  on t h e  c o o r d i n a t e  x and  t h e  t i m e  
~,  v = v ( x ,  r  i s  a s s i g n e d  i n  t h e  i n v e s t i g a t e d  i n t e r v a l  [0 ,  L]  o f  t h e  medium b e t w e e n  t h e  
wave source and the receiver. We subdivide the interval [0, L] into n segments with the 
boundary coordinates 0, x~, x2, ..., Xn-~, x n = L; the lengths of the thus obtained segments 

are correspondingly equal to Ax~ = x~, Axa = x2 -- xl, &x3 = x3 -- x2, ..., &x n = L -- Xn_~. 
We consider that the wave propagation velocity within each segment is independent of the co- 
ordinate, assuming that, for each segment, v1(z) = v(xl, T), v2(T) = v(x2, T) .... , Vn(T) = 
V(Xn, ~), respectively. We write successively the approximate expressions for the frequency 
shift acquired by a wave emitted at the instant of time To with the frequency fo = const with- 

in each segment: 

Axl de1 (%) 

a k ~  v--~(r0) dr ' 

Ax~ dv~ (T1) TI ---- % -~ - -  
Ah  ~ (to + Ah) v~ (rl) d ~  ' 

ax~ dv.~ (~,,) 
Ah  ~ (fo + a k  + Ah) v~ (r,,) a~ 

Axl Ax2 § 2 4 7  

A~ 

v~ (To) 

. . . . . . . .  , . . . . . . . . . . . . . . . . .  

af~ ~ f0 + a h  - v~ (r~--_l) dr ' 

(18) 
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n :  t 

Axs 

f = l  

The resulting change in the oscillation frequency arising as the wave traverses the in- 

terval [0, L]~ is obviously equal to the algebraic sum of the frequency shifts developing suc- 
cessively within each segment: 

A/('c) = "~ A/~ ('0. 
/1=1 

We rewrite expression (18) in a different form: 

J/;a_ ~/~oa~ --[- AfleZ.~ -t- A/;2rz~ q- A}3a~_, ' [ 

t �9 ~ . �9 . , o . o . . . . . . .  , . ~ . . 

(19)  

(20) 

where 

Adding expressions 

Ax~ dv~(~ci_J i = 1, 2 . . . . .  n.  
~ = v? ( z i _ J  d~: ' t 

(20), we obtain 

(21) 

, ~  ~ ~ . .  
~=~ ~:-~ ~=2 ~=3 ~=4 

(22) 

For Ax i -~ 0~ n ~ ~, the right-hand side of relationship (22) evidently approaches the 
actual value s We shall provide an estimate of this series. Assume that the derivative 

dvi(~i_1)/d~ has the same sign within all segments; in this case, all Af i will have the same 
sign, and the sum of the series, i.e., s will be at a maximum. If this condition is not 
satisfied, some terms of the series will have different signs, and the sum will diminish. 
Assuming for the sake of determinacy that ~i > 0 (i = i, 2, ... , n), we arrive at the obvi- 
ous inequality 

i: o >2 ~ . . .  

i = 1  i : 2  ~ : 3  

Considering this, we substitute the first sum for all the sums on the right-hand side of Eq~ 

( 2 2 ) ,  a n d  t h e n  o b v i o u s l y ,  

n tz 

i0 # . . .  A~ 

. .  = 1 Af + (Aft + Ah -t-- �9 AA) ~ ~ = (1o + A]') ~ L + ~ ,  
i : i  i = l  ' i : l  

so that the following inequality holds: 

L J ~=i 

It is evident from (23) that, with a relative error not exceeding Af/fo, we can neglect on 
the right-hand side of relationship (22) all terms of the second and higher orders, thus ob- 

taining 
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AXi dvi (g~_~) 
Af ~ fo v? (r~_l) d~ (24) 

, i = 1  t 

We also take into account the fact that, in actual cases in practice, the following con- 
dition is always satisfied: 

dv 
- -  T 3 ~  v. ( 2 5 )  
dr 

Violation of inequality (25) in a laboratory experiment can occur only in the case of fast 
processes of the explosion type. We shall illustrate this by using the following example. 
Assume that we are investigating a certain process in water by means of continuous ultrasound 
waves, using the nonstationary Doppler effect; the distance between the ultrasound emitter 
and receiver in water is equal to L = 1 m, and the velocity of ultrasound is v = 
1500 m/set; then, Ta = L/v = 1/1500 (set). Condition (25) is violated if dv/d~ ~ v/Ta = 
2.25.106 m/set 2, It is difficult even to imagine a process which would produce such a rapid 
change in the ultrasound velocity. Therefore, with a negligible error, we can put 

v~ (~_~) = v~ (to), dv~ ( ~ - 0  dvi (~o) 
dr & 

while To can be considered as the present time, measured, for instance, from the start of 
measurements. Taking this into account, we obtain the following instead of relationship (24): 

2 Axi dvi(') 2 Axl dv(x~, r) 

Considering that 

L n 

lira ~I~ 7 Ax, dv(xi, x) = ff dx dr(x, ~) 
A~.-,o ~ v 2 (xi, ~) d'~ v 2(x, ~) d'~ ' 

i = i  O 

we obtain the following expression for the nonstationary frequency shift of waves propagating 
in an inhomogeneous medium: 

L 

af (r) = fo v~ (x, "0 
0 

dr(x, r) 
dr 

(26) 

Expression (26) can be represented in a different form if the variables x and T are con- 
sidered to be independent. Then, 

dr(x, x) dx _ d (. dx ) 
& v~(x, "~) & v (x, T) 

h o l d s ,  and 

The quantity 

L 

a f  (r) -- - -  fo - - ~ .  v (x, ~:) 
0 

L 

j " d__i_x 
v (x, r) -- n (~) 

0 

(27) 

(28) 

has the meaning of the time during which the signal (wave) traverses the path interval [0, L], 
calculated for the instant of time T, i.e., it has the meaning of the instantaneous value of 
the lag time. In this case, the relationship L/T3(~) = v(T) provides the instantaneous value 
of the velocity averaged with respect to the coordinate at the instant of time T. Consider- 
ing this, we obtain 
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d 
af (~) = - fo ~ (29] 

or, for L = const 

L ~(T) (3Q) 
Af (~) = f.  

Thus, we have arrived at an expression similar to (17), the only difference being that 
v refers to the instantaneous Value of the wave propagation velocity, averaged over a section 
of the medium. 

NOTATION 

v, wave propagation velocity in the medium; x, y, z, coordinates; T, time; T3, time dur- 
ing which the wave traverses the interval of the medium under investigation; L, length of 
interval; fl and fo, frequencies of the waves emitted into the medium; f2, frequency of the 
waves that have passed through the medium. 

i~ 

2o 

3. 

4, 
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